Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Seitamaa_Hakkarainen, P; Kangas, K (Ed.)Today’s youth have extensive experience interacting with artificial intelligence and machine learning applications on popular social media platforms, putting youth in a unique position to examine, evaluate, and even challenge these applications. Algorithm auditing is a promising candidate for connecting youth’s everyday practices in using AI applications with more formal scientific literacies (i.e., syncretic designs). In this paper, we analyze high school youth participants’ everyday algorithm auditing practices when interacting with generative AI filters on TikTok, revealing thorough and extensive examinations, with youth rapidly testing filters with sophisticated camera variations and facial manipulations to identify filter limitations. In the discussion, we address how these findings can provide a foundation for developing designs that bring together everyday and more formal algorithm auditing.more » « lessFree, publicly-accessible full text available June 10, 2026
-
In recent decades, recruitment of young-of-year lobsters to benthic nursery habitats in the Gulf of Maine was regionally synchronized and exhibited correlative links with changes in the abundance of the copepod Calanus finmarchicus, a foundational zooplankton species of the pelagic food web. The spatial scale at which recruitment dynamics were correlated indicated that recruitment processes were not as strongly coupled to trends in spawner abundance as might be expected, but, rather, were influenced by common, ecosystem-scale processes. Here we explored how local- and basin-scale zooplankton dynamics and oceanographic indicators in the Gulf of Maine correlated with lobster settlement indices and each other since the late 1980s. Our analysis indicates that lobster settlement trends in southwestern Gulf of Maine study areas, from Midcoast Maine to Cape Cod Bay, tend to be significantly correlated with basin-wide C. finmarchicus dynamics and the composition of waters entering the Gulf of Maine through the Northeast Channel. In contrast, lobster settlement in the northeastern Gulf, from Penobscot Bay to the Bay of Fundy, tended to correlate more strongly to C. finmarchicus variability in the Bay of Fundy region, which was distinct in earlier years but converged with the broader basin-scale processes in the latter years. Our results are consistent with the hypothesis that the combined effect of climate-related declines in abundance and phenological shifts of C. finmarchicus have contributed to declines in lobster settlement over the past decade, and justify further research into the mechanisms of this interaction. These changes also align with the weakening influence of cold Labrador Slope Water and strengthening effects of warm Gulf Stream waters that precipitated an ecosystem-wide regime shift in the Gulf of Maine over the past decade and may have greater implications for lobster recruitment than previously suspected.more » « less
-
We build on previous research describing correlative links between changes in the abundance of the copepod Calanus finmarchicus, a foundational zooplankton species of the pelagic food web, and diminishing recruitment of young-of-year American lobster (Homarus americanus) to benthic nurseries in the Gulf of Maine. Using parallel 31-year time series of lobster larvae and zooplankton collected on the New Hampshire coast between 1988 and 2018, we investigated how changes in phenology of stage I larval lobster and their putative copepod prey, C. finmarchicus, affect their temporal overlap and potential to interact during the larval season. We found that over the time series both the lobster egg hatch and first appearance of larvae began earlier in the season, a trend significantly correlated with ocean warming. The last appearance of larvae in late summer has been delayed, however, thereby extending the larval season. Even with the longer larval lobster season, the C. finmarchicus season has increasingly been ending before the peak abundance of stage I lobster larvae. The net effect is a widening mismatch in phenology of the two species, an outcome consistent with the hypothesis that changes in abundance and phenology of C. finmarchicus have contributed to recent declines in lobster recruitment.more » « less
-
In this paper we share the seemingly ordinary community-building digital technologies that helped facilitate nine days of virtual professional development (PD) on the Electronic Textiles (hereafter e-textiles) unit for Exploring Computer Science (ECS). The e-textiles unit challenges teachers to learn new content about computing by designing functional circuitry in hands-on, personalized crafts, in ways that stimulate inclusive pedagogy and asset-based perspectives of students. Finding the right combination of supportive technologies spanned two years, including planning and two rounds of implementation (2020-2022), with careful reflection for re-design. We decided on a few seemingly basic digital technologies that supported the following design goals: 1) transparency of in-progress crafts, 2) community-building, and 3) connection to teachers’ everyday classroom practice. Below we share three technology choices that orient our revised PD model with explanations for those choices rooted in theory and practice.more » « less
-
Amongst efforts to realize computer science (CS) for all, recent critiques of racially biased technologies have emerged (e.g., facial recognition software), revealing a need to critically examine the interaction between computing solutions and societal factors. Yet within efforts to introduce K-12 students to such topics, studies examining teachers' learning of critical computing are rare. To understand how teachers learn to integrate societal issues within computing education, we analyzed video of a teacher professional development (PD) session with experienced computing teachers. Highlighting three particular episodes of conversation during PD, our analysis revealed how personal and classroom experiences—from making a sensor-based project to drawing on family and teaching experiences—tethered teachers’ weaving of societal and technical aspects of CS and enabled reflections on their learning and pedagogy. We discuss the need for future PD efforts to build on teachers’ experiences, draw in diverse teacher voices, and develop politicized trust among teachers.more » « less
-
Researchers and educators have identified an urgent need for more rigorous teaching and learning about epidemiology topics and practices, such as engaging in behaviors that prevent the spread of viral disease such as COVID-19. Responding to this need, we designed a virtual epidemic as a special event hosted in a virtual world. In this paper we share the strategic, tactical, and detailed design of the SPIKEY-20 virtual epidemic and data that reflects back on the design in terms of player participation. Reflecting on the design, we ask: What kinds of players participated in the SPIKEY-20 virtual epidemic? How did players engage in designed activities (i.e., preventive measures, information seeking)? In what ways were players influenced by the concurrent real world pandemic of COVID-19? In the discussion we consider the potential connection points between real-life and virtual public health behaviors, new possibilities of classroom participation and teacher support for such a virtual event, and future design considerations for virtual epidemics.more » « less
-
de Vries, E.; Hod, Y.; Ahn, J. (Ed.)Mindsets play an important role in persevering in computer science: while some learners perceive bugs as opportunities for learning, others become frustrated with failure and see it as a challenge to their abilities. Yet few studies and interventions take into account the motivational and emotional aspects of debugging and how learning environments can actively promote growth mindsets. In this paper, we discuss growth mindset practices that students exhibited in “Debugging by Design,” an intervention created to empower students in debugging—by designing e-textiles projects with bugs for their peers to solve. Drawing on observations of four student groups in a high school classroom over a period of eight hours, we examine the practices students exhibited that demonstrate the development of growth mindset, and the contexts where these practices emerged. We discuss how our design-focused, practice-first approach may be particularly well suited for promoting growth mindset in domains such as computer science.more » « less
-
B. Tangney, J. Bryne (Ed.)Much attention has focused on designing tools and activities that support learners in designing fully finished and functional applications such as games, robots, or e-textiles to be shared with others. But helping students learn to debug their applications often takes on a surprisingly more instructionist stance by giving them checklists, teaching them strategies or providing them with test programs. The idea of designing bugs for learning—or debugging by design—makes learners again agents of their own learning and, more importantly, of making and solving mistakes. In this paper, we report on our first implementation of “debugging by design” activities in a classroom of 25 high school students over a period of eight hours as part of a longer e-textiles unit. Here students were asked to craft buggy circuits and code for their peers to solve. In this paper we introduce the design of the debugging by design unit and, drawing on observations and interviews with students and the teacher, address the following research questions: (1) What did students gain from designing and solving bugs for others? (2) How did this experience shape students’ completion of the e-textiles unit? In the discussion, we address how debugging by design contributes to students’ learning of debugging skills.more » « less
-
Much attention has focused on designing tools and activities that support learners in designing fully finished and functional applications such as games, robots, or e-textiles to be shared with others. But helping students learn to debug their applications often takes on a surprisingly more instructionist stance by giving them checklists, teaching them strategies or providing them with test programs. The idea of designing bugs for learning—or debugging by design—makes learners again agents of their own learning and, more importantly, of making and solving mistakes. In this paper, we report on our first implementation of “debugging by design” activities in a classroom of 25 high school students over a period of eight hours as part of a longer e-textiles unit. Here students were asked to craft buggy circuits and code for their peers to solve. In this paper we introduce the design of the debugging by design unit and, drawing on observations and interviews with students and the teacher, address the following research questions: (1) What did students gain from designing and solving bugs for others? (2) How did this experience shape students’ completion of the e-textiles unit? In the discussion, we address how debugging by design contributes to students’ learning of debugging skills.more » « less
An official website of the United States government

Full Text Available